Deep Learning 01

 0    23 フィッシュ    mszzemanek
mp3をダウンロードする 印刷 遊びます 自分をチェック
 
質問 答え
accomplish
We describe how to accomplish these goals by specifying a model that represents certain beliefs
学び始める
osiągać
throughout
Linear algebra is a branch of mathematics that is widely used throughout science and engineering.
学び始める
poprzez
prerequisites
the key linear algebra prerequisites
学び始める
warunki wstępne
slope
the slope of the line
学び始める
stok / nachylenie
nachylenie linii
can be thought of
scalar can be thought of as a matrix with only a single entry
学び始める
można pomyśleć
to yield
We allow the addition of matrix and a vector, yielding another matrix
学び始める
wydawać, dawać
commutative
Matrix multiplication is not commutative
学び始める
przemienny
undesirable
学び始める
niepożądany
we can derive
学び始める
możemy wprowadzić
to staring
Sunset came; I stared at the México sky. Isn’t nature splendid
学び始める
gapić się
exclusive to
It’s not exclusive to machine learning
学び始める
wyłącznie dla
consecutive
Where tokens are groups of N consecutive words
学び始める
kolejny
discarding
and those that treat input words as a set, discarding their original order
学び始める
odrzucanie
discrepancy
you would face the risk of introducing small preprocessing discrepancies that would hurt the model’s accuracy.
学び始める
rozbieżność
reshuffling
Even within a given language, you can typically say the same thing in different ways by reshuffling the words a bit
学び始める
przetasowania
is an interesting one
The problem of order in natural language is an interesting one:
学び始める
jest ciekawa
Even further
Even further, if you fully randomize the words in a short sentence
学び始める
Nawet dalej / co więcej
pivotal
How to represent word order is the pivotal question
学び始める
kluczowy
from which spring
from which different kinds of NLP architectures spring.
学び始める
z którego źródła?
how/when to leverage which
Let’s see how they work, and when to leverage which.
学び始める
jak/kiedy wykorzystać które?
without leveraging
Meanwhile, the best score that can be achieved on this dataset without leveraging external data is around 95% test accuracy.
学び始める
bez wykorzystywania
How could we address this?
学び始める
Jak moglibyśmy się tym zająć?
sparse, sparsity
学び始める
rzadki, rzadkość

コメントを投稿するにはログインする必要があります。