Metody Ekonometryczne

 0    71 フィッシュ    fisza92
mp3をダウンロードする 印刷 遊びます 自分をチェック
 
質問 język polski 答え język polski
Model ekonometryczny
学び始める
układ równań wiążących określone wielkości ekonomiczne
Model liniowy
学び始める
model, w którym wszystkie równania są liniowe
Zmienna endogeniczna
学び始める
zmienna, której wartości określane są w modelu, w szczególności zmienna taka może być zmienną objaśnianą w pewnym równaniu modelu, a objaśniającą w innym równaniu tego modelu
Zmienna egzogeniczna
学び始める
zmienna, której wartości określane są poza modelem; oznacza to, że nie ma takiego równania, w którym zmienna ta jest objaśnianą
Postać strukturalna
学び始める
postać modelu, w której przedstawione są rzeczywiste relacje między zmiennymi; do zapisu strukturalnego wykorzystuje się najczęściej zapis macierzowy
Model symptomatyczny
学び始める
modele, w których rolę zmiennych objaśniających pełnią zmienne skorelowane ze zmiennymi objaśnianymi, ale nie wyrażają one przyczyn zmienności zmiennych objaśnianych
Model autoregresyjny
学び始める
model, w którym uwzględnione jest opóźnienie zmiennej objaśniającej oraz fakt, że zmienna objaśniania może zależeć od swoich przeszłych realizacji
Model dynamiczny/statyczny
学び始める
Dynamiczny - zmienne opóźnione/zmienna czasowa występuje Statyczny - nie występuje
Model prosty
学び始める
między zmiennymi łącznie współzależnymi nie występują powiązania
Model rekurencyjny
学び始める
model, w którym zakłada się istnienie powiązań między zmiennymi endogenicznymi nieopóźnionymi, ale niemających charakteru sprzężeń zwrotnych (powiązania jednokierunkowe)
Model o równaniach łącznie współzależnych
学び始める
Występują sprzężenia zwrotne (przynajmniej jedno) - powiązania dwustronne między zmiennnymi łącznie współzależnymi
Postać strukturalna modelu wielorównaniowego-opisz składowe
学び始める
BYt+ҐZt=εt B- macierz parametrów strukturalnych przy zmiennych łącznie współzależnych o wymiarach MxM, gdzie M to liczba zmiennych współzależnych w modelu Yt-obserwacje dokonane na zmiennych łącznie współzależnych (macierz o wymiarach Mx1) Ґ-macierz parametrów strukturalnych przy zmiennych z góry ustalonych (macierz o wymiarach MxK), gdzie K to liczba zmiennych z góry ustalonych Zt - macierz obserwacji dokonanych na zmiennych z góry ustalonych o wymiarach Kx1
Jak w zależności od budowy macierzy B w zapisie strukturalnym modelu wielorównaniowego zależy klasyfikacja ze względu na powiązania między zmiennymi łącznie współzaleznymi?
学び始める
Macierz B diagonalna - model prosty Macierz B trójkątna - model rekurencyjny (powiązania jednostronne) Macierz B w pozostałych przypadkach - model o równaniach łącznie współzależnych
Zmienna czasowa
学び始める
zmienna, której wartości odpowiadają kolejnym numerom momentów czasu, w jakich mierzono wartości zmiennej objaśnianej
Model zupełny
学び始める
model, w którym liczba równań jest równa liczbie zmiennych endogenicznych nieopóźnionych
Model jest identyfikowalny kiedy...
学び始める
... jeżeli jest możliwe wyznaczenie (niekoniecznie jednoznaczne) wartości parametrów tego równania na podstawie znajomości parametrów postaci zredukowanej modelu. (jeżeli wszystkie jego równania są identyfikowalne)
Zmienne łącznie współzależne
学び始める
zmienne endogeniczne nieopóźnione
Postać zredukowana modelu
学び始める
postać, w której zmienne objaśniane są opisane tylko przy użyciu funkcji wartości zmiennych z góry ustalonych
Szereg czasowy
学び始める
realizacja procesu stochastycznego w konkretnej próbie
Dane przekrojowe
学び始める
dane, które wyrażają stan zjawiska w ustalonym czasie, ale w odniesieniu do różnych obiektów
Zmienne współliniowe
学び始める
zmienne pomiędzy którymi występuje korelacja
Estymacja
学び始める
uogólnienie wyników badania próby na całą populację
Identyfikacja
学び始める
Proces przekształcania postaci zredukowanej modelu do postaci strukturalnej
Postać końcowa modelu wielorównaniowego
学び始める
postać, w której zmienne endogeniczne wyrażone są jako liniowe funkcje zmiennych egzogenicznych. Inaczej mówiąc, postać ta różni się od postaci zredukowanej tym, że z prawych stron równań modelu wyeliminowano opóźnione zmienne endogeniczne (jeśli takie były).
Ograniczenie zerowe a priori
学び始める
Ile zmiennych nie występuje w danym równaniu, a występuje w modelu
Co lepiej przedstawia postać strukturalna, a co postać zredukowana modelu wielorównaniowego?
学び始める
Postać strukturalna - ekonomiczna treść zależności między zmiennymi (umożliwia interpretację ekonomiczną) Postać zredukowana - umożliwia estymację parametrów
Model jest identyfikowalny, jeśli...
学び始める
jeżeli wszystkie jego równania są identyfikowalne
Model (lub równanie) jest jednoznacznie identyfikowalny...
学び始める
... jeżeli przekształcenie postaci zredukowanej w strukturalną jest jednoznaczne.
Warunek konieczny identyfikalności równania
学び始める
m1-1<=k2 M-1<=m2+k2 Liczba zmiennych łącznych współzależnych występujących w równaniu pomniejszona o 1 musi być co najwyżej równa liczbie zmiennych z góry ustalonych nie występujących w równaniu.
Co znaczą oznaczenia: M=m1+m2 K=k1+k2
学び始める
M - liczba zmiennych łącznie współzależnych m1 (m2)- liczba zmiennych łącznie współzależnych (NIE) występujących w danym równaniu k1 (k2)- liczba zmiennych z góry ustalonych (NIE) występujących w danym równaniu
Warunek dostateczny identyfikalności i-tego równania?
学び始める
macierz utworzona ze współczynników przy zmiennych występujących w innych równaniach modelu i równocześnie nie występujących w i-tym równaniu była rzędu M-1
Jeśli spełniony jest warunek dostateczny, kiedy możemy mówić o jednoznacznej a kiedy o niejednoznacznej identyfikalności równania?
学び始める
Jeżeli ten warunek jest spełniony i liczba zmiennych, które nie występują w tym równaniu (i występują w modelu) jest równa m-1, to równanie jest jednoznacznie identyfikowalne, zaś jeśli jest większa, to równanie jest niejednoznacznie identyfikowalne.
Od czego zależy Metoda estymacji parametrów modeli wielorównaniowych?
学び始める
od: 1. rodzaju powiązań między zmiennymi 2. identyfikalność modelu
Co to jest KMNK, PMNK, 2KMNK i kiedy się je stosuje?
学び始める
KMNK - Klasyczna Metoda Najmniejszych Kwadratów (do estymacji w modelach prostych) PMNK - Pośrednia MNK - do estymacji w modelach jednoznacznie identyfikowalnych 2MNK - Podwójna MNK - do estymacji w modelach niejednoznacznie identyfikowalnych
Na czym polega idea PMNK?
学び始める
Idea polega na wykorzystaniu ocen parametrów postaci zredukowanej do uzyskania ocen parametrów postaci strukturalnej.
Estymator nieobciążony
学び始める
estymator, którego wartość oczekiwana jest równa poszukiwanej wartości parametru
Estymator najefektywniejszy
学び始める
estymator, który ma najmniejszą wariancję w swojej klasie
Wartości teoretyczne
学び始める
wartości zmiennej objaśnianej, które kształtowane są na podstawie wartości zmiennych objaśniających
Test Durbina-Watsona
学び始める
test, którego używa się do zweryfikowania założeń o braku autokorelacji składników losowych
Estymator zgodny
学び始める
Estymator zgodny wtedy i tylko wtedy, gdy ciąg ocen uzyskiwanych za pomocą tego estymatora jest stochastycznie zbieżny do szacowanego parametru
Kiedy estymator jest nieobciążony?
学び始める
1. Zmienne objaśniajace są nielosowe 2. Zmienne objaśniające są nieskorelowane ze składnkikami losowymi modelu 3. Składnik losowy ma zerową wartość oczekiwaną (1+2+3 = wartość oczekiwana estymatora parametru jest równa poszukiwanej wartości paramentru)
Założenia KMNK
学び始める
1. Zmienne objaśniające moedlu muszą być liniowo niezależne. rz(X)=k+1<=n 2. Wartości zmiennych objaśniających są nielosowe, czyli nie są skorelowane ze składnikami losowymi modelu 3. Parametry strukturalne modelu są nielosowe 4. Składnik losowy ma wartość oczekiwaną = 0 5. Składnik losowy jest sferyczny (brak autokorelacji i brak heteroskedastyczności)
Zmienne ortogonalne
学び始める
ocena parametru związana z daną zmienną nie jest zależna od obserwacji dokonanych na innych zmiennych objaśniających
Co powoduje przybliżona współliniowość?
学び始める
1. Macierz kowariancji i wariancji ma relatywne co do wartości el. diagonalne 2. Oceny średnich błędów szacunku są zawyżone(t-Student zaniżony) Konsekwencje: -pozorna nieistotność poszczególnych zm. objaśniających -zawyżony R2 (współczynnik determinacji) -znaczne zmiany wartości oszacowanych parametrów, przy nieznacznej zmianie wielkości próby
Test na badanie stopnia przybliżonej współliniowości?
学び始める
VIF (czynnik inflacji wariancji) <10 VIF=1/(1-R^2)
Co zrobić jeśłi jest współliniowość?
学び始める
1. Regresja grzbietowa 2. Regresja wzg głównych składowych 3. Usuwanie zmiennych powodujących występowanie zjawiska współliniowości (bądź zastąpienie ich) 4. Wydłużenie próby 5. Oparcie estymacji na danych przekrojowo-czasowych
Na czym polega regresja grzbietowa?
学び始める
Dodanie pewnej stałej do wartości wariancji zmiennych objaśniających w celu zmniejszenia wzajemnego skorelowania zmiennych objaśniających. (usunięcie współliniowości)
Efekt katalizy
学び始める
sytuacja, w której zmienna objaśniająca słabo skorelowana ze zmienną objaśnianą po usunięciu z modelu powodu znaczący spadek wartości współczynnika determinacji
katalizator
学び始める
zmienna, której wprowadzenie do modelu powoduje znaczący wzrost wartości współczynnika determinacji
Testy o homoskedastyczności składnika losowego
学び始める
Test Harrisona-McCabe; Test White'a
Reszty modelu
学び始める
wszystkie różnice pomiędzy wartościami teoretycznymi a praktycznymi
Homoskedastyczność składnika losowego
学び始める
składniki losowe mają taką samą wariancję
Współczynnik determinacji
学び始める
iloraz wariancji wartości teoretycznych i wariancji wartości empirycznych zmiennej objaśniającej; miara pozwalająca określić czy model jest “wystarczająco” dobry. Czyli objaśnia jaka część zmienności zmiennej objaśnianej jest wyjaśniona przez model
Współczynnik zbieżności
学び始める
Jaka część zmienności zmiennej objaśnianej nie została wyjaśniona przez model. =1-R^2
Badanie istotności zmiennych (jakie testy?)
学び始める
Test t-Studenta - wykorzystywany do weryfikacji istotności parametru w modelu Test F-Sendecora - wykorzystywany do weryfikacji istotności całego wektora parametrów (test Walda)
obszar niekonkluzywności
学び始める
W sytuacji gdy test DW nie daje odpowiedzi na temat występowania autokorelacji, jest to tak zwany obszar niekonkluzywności.
Błąd standardowy
学び始める
estymowane odchylenie standardowe błędu danej metody
Błąd względny
学び始める
iloraz pomiędzy błędem bezwzględnym i wartością dokładną zmiennej objaśniającej
Współczynnik autokorelacji k-tego rzędu
学び始める
współczynnik korelacji wartości zmiennej objaśnianej z wartościami tej samej zmiennej przesuniętej w czasie o k okresów
Jak zbadać natężenie efektu katalizy?
学び始める
Badamy integralną pojemność informacyjną H. Natężenie efektu katalizy= R^2-H Im większa korelacja między zmiennymi objaśniającymi, tym niższe wartości przybiera H.
Metody różniczki zupełnej
学び始める
estymacja parametrów przy wykorzystaniu przyrostów wartości zmiennej (można z tego korzystać tylko jeżeli współczynnik autokorelacji jest bliski jedności)
Co oznacza autokorelacja?
学び始める
pomiędzy zmiennymi losowymi a ich opóźnieniami istnieje zależności stochastyczna.
brak sferyczności składnika losowego
学び始める
autokorelacja+heteroskedastycznoś Estymator oszacowany KMNK nadal jest nieobciążony i zgodny ale traci EFEKTYWNOŚĆ.
Uogólniona MNK
学び始める
Stosujemy, gdy brak jest sferyczności składnika losowego (nie możemy przeprowadzić KMNK). UMNK stosujemy wyłącznie gdy macierz omega jest znana lub możliwe jest jej oszacowanie. Szacujemy parametry modelu na podstawie transformowanych zmiennych.
Jakie są konsekwencje braku sferyczności składnika losowego (heteroskedastyczność/autokorelacja?)
学び始める
Niedoszacowanie wariancji składnika losowego; Niedoszacowanie błędów standartowych parametrów; Zawyżone statystyki t-Studenta. Obraz weryfikacji modelu jest nieprawdziwy. Poza tym obserwujemy zbyt wysoką wartość R2 czyli współczynnika determinacji. Powstaje złudne dobre dopasowanie modelu do danych empirycznych.
Metoda Cochrane'a -Orcutta
学び始める
jest wersją UMNK (uogólnionej metody najmniejszych kwadratów) a stosowana bywa przy wystąpieniu autokorelacji pierwszego rzędu.
Koincydencja
学び始める
zgodność znaków ocen parametrów i znaków współczynników korelacji
Kompensacja
学び始める
jeżeli dwie zmienne objaśniające są ze sobą skorelowane; jedna jest niedoszacowana, a druga jest przeszacowana
Anihilacja
学び始める
Sytuacja, w której dwie zmienne są dobrymi zmiennymi objaśniającymi ale w połączeniu znacząco obniżają współczynnik determinacji. (wysoka korelacja)
Regresja grzbietowa
学び始める
sztucznie zmniejsza się wartość współczynników korelacji (przez dodanie wartości parametru lambda) w celu otrzymania bardziej stabilnych wartości współczynników.
Kinetoza
学び始める
powoduje Anihilację; silna współliniowosc zm. objaśniających

コメントを投稿するにはログインする必要があります。